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Executive summary

Reward structures refer to the design of payments to customers for the network support
services that they provide. In the CONSORT project, we have developed reward structures
that unpack the “value-stack” available to distributed energy resources. In keeping with recent
microeconomic reforms to the electricity sector, these reward structures implement
value-reflective pricing methods for network support, so align with the move to cost-reflective
network tariffs put in place after the AEMC’s Power of Choice review.

A solution to the problem of pricing the network support provided by customer-owned batteries
was found in the economic concept of the Shapley value, which was used as a template of an
ideal reward structure. The Shapley value provides a principled set of properties related to
network support pricing, most importantly a form of fairness (equal treatment to equal
contributions and independent pricing of independent effects) and efficiency (full disbursal of
the rewards available). However, since directly using the Shapley value reward structure in
practice is computationally infeasible, the project developed various estimation and
approximation methods. These were integrated with the NAC algorithm, and successfully
deployed in the field. Analysis of the payments computed by these reward structure methods
indicated that they did indeed reflect the batteries’ value to the network in principled ways, with
useful findings for distribution network companies and retailers.

Despite these successes, the reward structure methods developed had varying degrees of
success by practical computational metrics. One finding from the reward structures work
package is that the exceptionally difficult task of calculating the Shapley value of a network
support event makes it infeasible to use as a method of generating spot or even close-to
real-time prices, unless severe approximations of the computation are made. Additionally,
although they could be deployed in the CONSORT trials, the required approximations
undermine the use of these reward structure for calculating customer payments in more
complicated problems of sharing multiple DER value streams, for example, when
simultaneously managing network voltages as well as thermal limits.

Nonetheless, a path forward to the use of value-reflective reward structures in paying for
network and power system support services has been plotted based on the findings of the
project. The methods developed can overlay any DER control scheme, regardless of its level
of sophistication. We will continue to develop the required models and methods, and to
prosecute the arguments, for value-based reward structures for support provided by
customer-owned DER.
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1 Introduction

This report considers the design payments to the customers involved in the Bruny Island
battery trial, for the network support provided by their batteries. We call these payment
designs reward structures. We have designed the reward structures to be value-reflective, in
keeping with the move to cost-reflective network tariff structures that have been put in place in
response to the AEMC’s Power of Choice review.

Specifically, the reward structures work package investigated methods for non-linear pricing of
network support provided by any behind-the-meter energy resources, including but not limited

to residential batteries. These methods are based on cooperative game solution concepts, and
as part of the project, the Shapley value was selected as the best suited method of generating
value-reflective prices for network support.

The report is structured as follows. The next two subsections provide the rationale for adopting
a cooperative game pricing problem formulation and selecting the Shapley value as a solution.
Following this, Section 2 considers the computational methods developed during the project
used to implement the reward payments. Section 3. Finally, we provide some concluding
thoughts and recommendations for further research in this area.

1.1 Cooperative games

Cooperative games model surplus division problems, in which a group of players or agents
that have agreed to cooperate to earn a joint reward, also have to decide how that reward is
allocated among them. That is, in cooperative game theory a coalition should divide its reward
among its members. Specifically, these games are used to model strategic situations involving
rational, self-interested agents that can form binding contracts with one another to pursue a
common action. Thus, the problem one faces in analysing a cooperative game is to find a
division of the rewards earned by a coalition that, first, ensures stability of the coalition, and
second, achieves some distributional goals, such as fairness, proportionality, etc. It is the
ability to commit to a course of action that distinguishes cooperative games from the
more-widely known non-cooperative game formulation (e.g. which are used to model auctions
or congestion problems).

Pricing rules based on cooperative game models have some key differences with conventional
pricing methods employed in auctions or used in charging for the use of regulated network
assets. For example, marginal-cost pricing is the typical approach used to price power
generation. In an optimisation framework, marginal-costs are derived as dual variables or
constraint multipliers. In the NAC, this could give rise to locational marginal prices that are
computed by considering the incremental benefits of discharging customers’ batteries on
diesel costs. In this, storage assets are assumed to be available all the time, and pricing is
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spot pricing (i.e. in five minute intervals). Effectively, prices are an artifact of the optimisation
model formulation used. In contrast to the incremental benefit pricing approach, cooperative
solutions are derived based on certain properties or axioms, which can be chosen to encode
principles, such as fairness and/or efficiency. This allows for some greater flexibility in the way
prices can be derived in a given setting, including allowing for redundancy to be priced, or
entire dispatch schedules to be allocated a price representing their benefit as a whole, rather
than as the sum of the prices in the spot-market. Of particular interest to us is the principled
way that cooperative games allow us to isolate the self-interested behaviour of customers from
their NAC-coordinated network support actions. Our results later illustrate how the Shapley
value provides us with a way to solve these economic problems.

Formally, the cooperative game model and its Shapley value solution can be straightforwardly
mapped to the network support setting, as follows:

e A coalition of battery controllers (the agents) is paid by a DNSP to provide enough load
relief to overcome a predicted thermal constraint excursion. Note that the actual
'players' in this game are the battery controllers acting as agents for householders or
customers, who rely on the technology of Reposit and the NAC to negotiate and make
decisions on their behalf and in their best interests.

e |n practice, the battery owners agree to perform some optimal joint network support
action using a form of distributed optimization and control platform, and in the analysis
we present in this report, we draw on NAC algorithms developed by ANU (see Network
Aware Coordination FInal Report [1]).

e For completing this network support action, the aggregated coalition of battery systems
as a whole receives a reward in the form of a payment from TasNetworks. In the Bruny
Island Battery Trial (the Trial), the size of this payment is determined using a heuristic.
However, in the future we reasonably expect it to be determined by a network
monopoly regulating body, such as the Australian Energy Regulator.

e At the same time, each DER owner incurs some private cost, in the form of energy cost
savings foregone, round-trip losses due to charge and discharge inefficiencies, and
device degradation.

e Thus, the players in the cooperative game are DER owners, and the payment to the
coalition has to be divided among the DER owners.

For this payment division problem, we investigated the use of the Shapley value solution.

Before introducing the Shapley value, some definitions are required. If the players in a
cooperative game agree to work together, they form a coalition. If all N player form a coalition,
it is called the grand coalition. Collectively, the joint action has some worth associated with it
(i.e. revenue). The characteristic function of a game defines the worths of all possible
coalitions, S € N,and is denoted w(S) : 2" — R with the worth of the empty coalition equal to
zero, w(©) =0.
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1.2 The Shapley value

The Shapley value is a seminal cooperative value division rule developed by game theory
researchers. It was derived to satisfy the following properties (referred to as “axioms” in the
research community):

e Efficiency: the full payment is allocated;
e Symmetry: identical DER are allocated the same amount;

e Additivity: if an agent is involved in two separable games at once, its allocation is the
sum of its payoffs in the two games separately, and;

e Null player: those who contribute nothing to the coalition receive zero payoff.

These properties make the Shapley value an ideal metric against which to evaluate the value-
(or cost-) reflectivity of a particular “simple” reward (or tariff) structure. In addition, and by
design, the Shapley value is unique and always exists, which is uncommon for cooperative
solution concepts.

The Shapley value for player/customer i is given by the function:

gom =1 ¥ &S U -w)
SSN\I

Here, the value function ¢; has the following intuitive interpretation: consider a coalition being

formed by adding one player at a time. When i joins the coalition S, its marginal contribution to
the resulting coalition is given by w(S U i) — w(S). This is the last part of the expression above.

Then, for each player, its Shapley value payoff is the average of its marginal contributions over
the possible different orders (or permutations) in which the coalition can be formed, where the

binomial term is the number of coalitions of size |S]|.

The main challenge in computing the Shapley value is that the number of possible coalitions
grows exponentially with the number of players (i.e. 2" ). In the CONSORT project context,
this means the exact computation of the Shapley value requires solving 2" or more than 34
billion optimal power flow problems. Clearly this is infeasible, so a major focus of the rewards
structure work package has been to investigate ways to efficiently approximate the Shapley
value. The next section describes two approaches developed during the project to overcome
this computational hurdle.
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2 Reward structure computation algorithms

The first part of the reward structures work package was to develop algorithms to compute
value-reflective rewards for customers contributing to the NAC network support. As discussed
above, the approach adopted was to use the Shapley value as reward structure template, and
the supporting computational procedures for this are described here. This proved to be a very
technically-challenging task, and several approaches were trialed over the course of the
project. The two most-effective are documented in the section.

2.1 General Shapley value-based approach

The steps involved to develop the general Shapley value-based reward structures approach
were as follows:

1. Compute the Shapley values for each customer (using either a sample-based or
relaxation approximation method) in terms of diesel generator cost reductions;

2. Normalise the Shapley values, so that they represent the proportion of the TasNetwork
budget to allocate to each customer;

3. Calculate the TasNetworks total expenditure, given as the total battery kWh discharge
during the peak period multiplied by $1/kWh, and allocate this amount to customers in
proportion to their normalised Shapley values, and

4. Apply a lower bound to ensure no customer was worse off for providing support.

Two algorithms for Steps 1 and 2 regarding the Shapley values are discussed in detail in
Sections 2.2 and 2.3 below.

For step 3, the TasNetworks budget was set by calculating the sum of battery discharging
during the support period T, times $1/kWh:

TN Budget = $1.0 x > oy Pid(t)
iEN €T ’

sup

where P, (1) is the discharged energy from battery i € N during dispatch interval ¢ € T, .

For step 4, the lower bound on payments over the period is given as the amount which will
ensure that, no matter what the battery does during the actual peak, the customer will not be
worse off. Typically this is $1.81 per battery discharge event for the LG Chem batteries widely
in use in the trial (derivation provided in Section 3.1).
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2.2 Algorithm 1: Sample-based estimation of the Shapley value

The sample-based Shapley value computational architecture used to compute the Shapley
value of customers’ contributions under the NAC is found in Figure 1 below.
Samplers

NAC/NAC emulator Estimators

MAB bin selection
MAB bin variance

ettt 2 Marginal cast : Bin variances policy
i estimator
marginal cost (MC-UCB or
evaluator epsilon-first)

A

Bin selection

Batch of coalitions,

evaluate final member's

marginal contribution

Shapley value
estimator

Coalition sampler
(stratified batch

A sample heuristics
AN within a bin)

Figure 1. The computational architecture used to compute the Shapley value of customers’ contributions under the NAC

NAC emulator: In this part, an optimal power flow solver computes the total cost of the NAC
(diesel and customer retail costs) with and without a particular customer’s participation. The
difference in cost give the customer’s marginal contribution to the NAC assuming only a
sub-coalition S < N of customers participate. This is the fundamental measurement used to
estimate the Shapley value. For this step, accelerated NAC-emulating optimisation algorithms
have been developed. More on this work can be found in Section 2.4.

Estimators: The marginal contributions are used to drive two different estimation routines.
The first is a multi-armed bandit (MAB), which is used to sample sub-coalitions and estimate
the Shapley values, and the Shapley value estimator itself.

In more detail, the marginal contributions are used to drive the online sampling algorithm,
which uses the MAB framework for online (or iterative) optimisation of unknown stochastic
functions (upper arm of the diagram above). MAB bins are constructed for groups of the
sub-coalitions S arranged by size, and the variance of the marginal contributions for each bin
size is recorded at each iteration. The marginal cost that is computed by the NAC emulator is
used to update a running estimate of the marginal cost variance for its respective MAB bin.
The bin variances are used by an MAB policy to select the next bin (sub-coalition size) to
sample from and evaluate. At the same time, the marginal contributions are used to update a
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vector of values of the Shapley value estimate, one for each customer. These are standard
running average and variance estimates.

Samplers: A range of MAB bin selection heuristics have been evaluated in the course of the
project. We used a well-known and widely-used method, called the upper confidence bound.
In the setting of variance-based efficient estimation, this policy selects the bin with the largest
variance; which in our setting is the coalition size with the largest variance on the average
marginal contribution.

Given a coalition size, the coalition sampler is then used to sample a particular batch of
coalitions of that size. The specific mechanism used begins by randomly selecting a pivotal
sub-coalitional of the required size, to evaluate as a base case for all marginal coalitions. Then
a full batch of sub-coalitions is generated by, first, removing members of the pivotal
sub-coalition one at a time (so that their marginal contributions can be computed) and second,
adding in each customer not in the pivotal coalition. This produces N+71 sub-coalition problems
for solving by the NAC emulator and is used to return N marginal contribution samples, one for
each customer.

Putting these modules together, the overall process is as follows:

1. The MAB keeps track of the variance of marginal contributions to coalitions of each
size, and the MAB bin selection routine choose the coalition size with the greatest
variance on each sampling iteration;

2. After selecting a coalition size, the coalition sampler routine uses a stratified batch
sampling heuristics to select a number of coalitions with the corresponding coalition
range;

3. The batch of coalitions is passed to the NAC counterfactual marginal cost evaluator,
which returns a batch of marginal contributions, one for each customer;

4. The marginal contributions are passed to (i) the MAB routine, which returns to step 1,
and (ii) the Shapley value estimator, which updates its estimates;

5. The process is repeated until Shapley value estimates reach the required degree of
accuracy.

2.2.1 Discussion on computational performance

During the trial, the Shapley values were to be computed using the sample-based estimation
method as described above. This guarantees convergence to the true Shapley values in the
limit, that is, as the number of sample grows large. Nonetheless, for 34 customers, this takes a
very long time to compute exactly, so the estimation is truncated early when sufficient
statistical confidence is attained. Usually this is up to 200 hours of computation, corresponding
to around 100-150 samples for each of the 34 customers (i.e. ~5000 NAC instances), and only
in certain unusual circumstances is it reliably quicker. Even when making use of
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high-performance algorithms and multi-core computing hardware (as discussed in Section
2.4), this can only be brought down to around 10 hours of computation.

As such, the sample-based approach took too long for the trial’'s messaging timelines, which
had a computational wall time duration of around 1-2 hours. This was a major learning during
the project, as the limits of the sample-based Shapley value computation methods were not
well understood before we began the CONSORT trial. The long computational times of the
sample-based approach also drove us to explore various approximations of the Shapley value.
One approach - an online heuristic - stood out for meeting project requirements, and was
ultimately integrated into the NAC computation stack and deployed during the trial, as
described in section 2.3.

2.3 Algorithm 2: Online heuristic Shapley value approximation

The online heuristic Shapley value approximation works by (i) applying a mathematical
linearisation or “averaging” to the contribution of the batteries on each phase to the network
support problem, which is effectively linearising the network losses component, and (ii)
aggregating phases in the counterfactual computation to reduce the size of the Shapley value
computation of the problem by several orders of magnitude. Taken together, this produces an
algorithm that runs in seconds. These two components are described in detail below.

Linearisation: The purpose of the linearisation is to determine an analytically tractable
marginal contribution of a customer to the network support problem. The marginal contribution
depends on the customer’s available energy and power, and its voltage ratio, whether it is
connected to the line that is setting diesel dispatch level (if it is dispatching), and the amount of
diesel reduction that is available to the NAC system.

The linearisation has three steps. First, the network loss effects on the network support
problem are lineralised around the NAC operating point, as follows. Given the active power
component at a generator, and current down a line, of a NAC solution, P*and /*, respectively,
we derive the following relationship. If we fix the voltages of customer i's bus (bus A), V ,, and
the diesel generator, V,, at the NAC operating point, we can express the power flow,
including an approximation of the losses to the network, in terms of the currents, as a linear
function of the losses. With some manipulation of terms, and assuming the change in current
from a battery is full compensated by a change in the generator current 1"y — 1, = I', —1,, we
have:

Py=Py=I'; = 1)V, =P, = PYV,/V,

Denote the value V,/V , the voltage ratio for i. This value is used to account for network

losses in the network support cooperative game (including all auxiliary games to be defined in
what follows).
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The voltage ratios are fixed for the cooperative game, and are computed immediately after the
peak event based on measurements of the actual NAC operation.

Second, a network_overlimit value is computed, to represent the potential diesel use
reductions available to the NAC. This value is computed from a simulation of the network
effect of removing the diesel generator and not operating the NAC. This results in line currents
that exceed their limits, and gives a counterfactual case for evaluating the benefit of the diesel
generator and the batteries. Specifically, the network _overlimit value is the sum of the current
flowing on the highest-current line during the peak time over the current limit in the
counterfactual simulation, converted to an energy value (i.e. convolved with the voltage profile
during the simulated peak). For each time-slot, this value is trimmed to the maximum collective
power of the batteries whenever the required power exceeds the power capacity of the
batteries. (A potential further extension is to also trim to the value to account for the diesel
minimum dispatch level, although this step has not been implemented.)

Third, to generate this marginal value for each customer, we define two values on the
customer side:

- B_E nac is the total energy available (to the NAC) from each battery, and
- B_E_selfish is the energy used under a selfish schedule (i.e. no NAC).
Then the fixed marginal contribution of customer i, denoted 0, , is:
0, = (B_E_nac — B_E_selfish) V[V ,

where A is the bus connecting i to the network. This is an approximation of the additional
energy available to the NAC at the generator bus over what would be selfishly dispatched by
the batteries during the peak period; or effectively the extra energy that the NAC pulls out of
the batteries to offset the diesel generator (or that the NAC can dispatch in any particular
counterfactual coalition instance). The 0, value is used to apportion the network_overlimit

value between the NAC-enabled customers.

Aggregation: We can treat 0, as customer /'s linear component of the game's characteristic
function. Once the cooperative game is a linear game, we can use some analytic tricks to
efficiently compute the SV. In particular, we consider block coalitions of customers grouped by
phase sans j, and then compute i’s individual contribution to these block coalitions to produce
a final approximation of the SV.

In more detail, the aggregation step exploits the linearity property of the SV to massively
reduce the number of marginal value calculations required. For each player, an auxiliary game
is constructed by aggregating the remaining customers’ network support by phase, and
treating each aggregated phase as one player in the auxiliary game. Each auxiliary game has
four players, so its characteristic function has 16 entries, and therefore the SV of the focal
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player in this auxiliary game can be computed exactly with no difficulty and is solved
algebraically.

One potential source of error in this aggregation step is that the “merit order” effect induced by
customers having different loss reductions, due to their location on the network and the
distribution of loads, is lost in the by-phase averaging. A second is that the phases with many
customers may be receiving a disproportionately large SV, due to the relatively large size of
their aggregated theta’s. The comparison of this heuristic to the sample-based method mis
conducted to assuage these concerns.

2.4 High-performance DER coordination algorithms

Realistic and fair reward structures require the modelling of the Bruny Island distribution
network and subsuming it in the Shapley value (SV) approximation scheme. A detailed model
of the network is important because the dispatch schedule from the batteries is directly
affected by voltage drop, congestion on the undersea cable, and the phases that this battery is
connected to. The resulting framework is a multiperiod optimal power flow with flexible
demands, otherwise known as Network ware Coordination (NAC). The NAC is a large-scale
nonlinear nonconvex programming problem that has an NP-hard computational complexity. In
fact, for a 12-hour scheduling horizon and a half-hourly time resolution, the NAC problem has
more than 200,000 variables and more than 230,000 constraints. The SV approximation
requires pivoting in and out a large number of different coalitions of agents. Therefore, it is
necessary that the NAC solved at each instance of this pivoting is fast enough to ensure
computing the reward structures within a feasible time frame. The NAC can be solved in two
ways, either centrally or in a distributed fashion.

The centralized NAC is coded in Python with the use of MADOPT as an automatic
differentiation tool for the backend solver IPOPT. In the aim of speeding up the solve time of
the NAC, line current limit constraints are only considered for the undersea cable, which
greatly reduces the number of constraints as opposed to enforcing line current limit constraints
on every overhead line in the network. This stems from the observation that most of the lines
in the network have current limits greater than that of the undersea cable. This means that the
undersea cable will always hit its thermal limit before the other overhead lines downstream
from it in the network do. Consequently, this reduction in the number of quadratic constraints
results in a speedup of up to 5 times. Specifically, before the constraint reduction the
centralized computation time was about 300 seconds on average compared to 60 seconds on
average after the constraint reduction.

Another way of solving the NAC problem is to duplicate the complicating variables which
allows for a component-based decomposition of this problem in the dual domain. The resulting
dual problem can now be solved using the alternating direction method of multipliers (ADMM).
The advantages of ADMM are 1) that it is robust and; 2) that it preserves the separable
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structure of the problem. As a result, the problem can be solved in a distributed fashion, which
has the potential of being faster than the centralized approach. Unfortunately, achieving this
superior performance requires a large number of cores to be used for the parallel computation.

We emphasise that the computational complexity of the problem manifests as a barrier to
Shapley value computation because of the extremely large number of NAC instances that
need to be solved. In contrast, in the operational version of the NAC, described in [1], only a
single NAC instance is solved for each time step, and the methods developed by ANU
overcame the computational challenges this presented.
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3 Reward structure trials

The CONSORT reward structure trials considered two independent design considerations for
the network support payments made to customers. One major consideration was the the
design of payments made to customers. This includes the timing of peak event alerts and
payment information sent to customers. In order to understand these effects two treatments
were developed and trialed: 1) Energy Reserve payment and: 2) Energy Use payment.
Roughly speaking, Energy Reserve payments were computed on forecast NAC operation and
communicated to Trial participants via a text/email notification received via the Reposit system
before a forecasted peak event; while Energy Use payment were computed from actual NAC
operation data and communicated to participants after a peak event. Section 3.2 discusses the
findings from these payment design trials.

The focus of Section 3 of this report was the technical development of computational routines
used to implement Shapley value-based payments. In particular, Algorithm 2, described
earlier, was integrated with the live NAC deployment as part of the field trials; this work is
discussed in Section 3.3.

Finally, in Section 3.4, we analyse the network support payments and financial outcomes for
the customers.

To begin, however, we provide an overview of the trial periods, during which customers were
paid for their network support.

3.1 Trial events

The reward structures were trialed alongside the NAC during the peak periods listed in Table 1
below (a subset of the trials reported in the Network Aware Coordination Final Report [1]).

Dates Details Result

29/03/2018 to Easter holiday. Energy Reserve | 6 peaks. Energy Reserve payments

03/04/2018 payment type with heuristic and customer messaging executed
reward in use. without problems.

13/04/2018 to April school holidays. 0 peaks, so no payments.

03/05/2018

08/06/2018 to Queen’s Birthday long weekend. | 5 peaks.
12/06/2018

13/07/2018 to July school holidays. Switched 5 peaks. Energy Use payment and
23/07/2018 to Energy Use payment type customer messaging executed
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(with heuristic reward) on without problems from morning of 15
15/7/18. July.
19/12/2018 to Summer holiday period. 0 peaks, so no payments.
09/01/2019 Continued with Energy Use
payment type.
08/02/2019 to Special session to live test Successful demonstration of SV RS
09/02/2019 Shapley-value based reward code.
structure code.

Table 1. A summary of the trial periods where the team tested the reward structures.

Some general features of all of the trials are described next.

Heuristic payment: Due to delays in developing Shapley value routines for the live trials, we
used a heuristic payment for the trial. This payment was based on battery discharging during
the support period T, , and is given by:

Provisional payment = $1.0 x Y P [(t).
€T g
where P (1) is the discharged energy during dispatch interval ¢ € T, . In Section 3.2, the

difference between the Energy Reserve and Energy Use is explained in terms of whether the
power discharged value is a forecast or an actual value.

Payment lower bound: As noted previously, a lower bound on payments was always applied,
and the bound applied in the two test cases described here is the same. The lower bound is
set to an amount that over the period, will ensure no matter what the battery does during the
actual peak, the customer will not be worse off, and is given by:

Payment bound = $0.343 x min[SoC pax,|T sup| x P " ]

where:

- $0.343 is the tariff difference for buying high and selling low over the support period
divided by the inverter round-trip efficiency, 0.9),

- SoC.q is the maximum energy that can be stored in the battery, and

- Tyl x P " is the most that can be discharged during an interval of length |T',,| .

In other words, this bound is the approximate difference in retail electricity bills between the
best and worst case uses of the battery from the customers’ perspective. This was the same
bound as used previously.

Budget: The TasNetworks budget was set by calculating the sum of battery discharging from
all customers during the support period T, times $1/kWh:
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TN Budget = $10 x Y > P. (1)
iEN €T ’

sup

where P, (1) is the discharged energy from battery i € N during dispatch interval ¢ € T, .

3.2 Payment types: Energy Reserve versus Energy Use

Under the Energy Reserve payment, CONSORT paid customers based on how much of a
customer’s battery capacity we expected to use, advised in advance of the peak event. The
Energy Use payment paid customers based on how much energy was actually used from their
battery to provide the network with support, advised after the event.

Payment type trial supporting information: In order to understand Trial participants’
perspectives on the two treatments, payment timing coincided with social science and NAC
activities. In particular they were timed with the data collection via ‘energy diaries’ and
interview processes undertaken by CONSORT'’s social science team. The reward structures
team also assisted in preparing communications conveying this information for customers,
including emails, FAQs, website blog posts and video explainers. We used the following text to
explain the difference between the two payment types to participants:

“For the Energy Reserve payment type, we will be paying you before an event to
reserve some energy in your battery. Think of it like we are borrowing your battery for a
little while. We pay you based on how much energy we need you to reserve in your
battery, where you are on the electricity network, and what sort of system you have.
Importantly, we will tell you how much we will pay you before the event and pay you
regardless of whether we actually use your battery or not. Thinking again of the car
analogy, this time we pay you to reserve your car for our use for a bit, regardless of
how much we end up using it, and we pay a different amount for each car depending
upon how useful we think it will be to us.

“[Under the] Energy Use payment... We will tell you how much you were paid after an
event and it will be based on how much energy we buy out of your battery. Similar to
the Energy Reserve payment system though we will vary how much we pay you based
on ‘usefulness’, what sort of system you have and where you are in the network.
Again, if you think of it as us borrowing your car, you'll be paid based on how far we
actually needed to drive your car, with each car owner being paid different amounts.”

3.2.1 Findings

From the participants’ point of view, receiving notifications of the size of network support
payments before or after the events - that is, as energy reserve or energy use payments,
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respectively - appeared to have very little salience or effect on behaviour (this finding is
discussed in more detail in the Social Science final report [2]). This is useful knowledge,
because we had previously conjectured that some customers may not like to have their battery
used for network support without knowing the payment they would receive in advance.
Indifference between the two indicates that customers may be happy to be paid in any
reasonable form, or it may be an indication that other factors, such as having trusting
relationship between the parties or a deeper level of understanding of the technology, may
have greater salience in customers’ minds.

From the DNSP and aggregator point of view, however, the two payment types present quite a
different challenges, the main being the veracity of forecast information. Specifically, under the
Energy Reserve payment type, the payment amount depends on a forecast time series of
each customer’s energy use, and of the network state, around the forecast peak period. This
brings with it two main difficulties.

First, forecasting peaks is in itself a challenge, as they are rare events, and the NAC settings
are biased to prepare for a peak even if one does not eventuate. This lead the Energy
Reserve payment to allocate payments for peak events that do not realise. In contrast, Energy
use payments do not suffer from this “false peak” problem, as they are computed after the
fact.

Second, using customer load and network state forecasts to run optimal power flow studies on
which payments are based is invariably inaccurate, as the power flow solutions are notoriously
sensitive to network conditions. At the same time, load forecasts for individual households are
very volatile, as there is no large number effect smoothing the load (e.g. compared to load
profiles used for network planning problems, where the large number of customers smooths
out their individual volatility). Within this context, we noted that the network voltage effects on
the battery merit order are of importance, which can vary dramatically depending on load
values, and as a consequence can produce Energy Reserve payments that does not closely
correspond to the actual energy discharged from batteries for network support.

Beyond issues of forecasting and accuracy, a third challenge regards the potential for strategic
behaviour by customers under the Energy Reserve payments (and to a much lesser extent the
Energy Use payments with the heuristic payment, but not the Shapley value rewards).
However there is a commitment problem between when the customer is paid and when they
use energy in their homes, that potential allows customers to be paid for reserving energy, but
does not bind them to keeping that energy available for use during the upcoming network
support period. Instead, the energy could be used to serve local load, thereby removing the
benefit to the network. We stress that this was not observed in the trial, but it was a concern
uncovered during the trial by the CONSORT team, and could be used by sophisticated
customers with significant or complete agency over their loads that are involved in NAC-like
network support or demand response operations.
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These three implementation difficulties, and the aforementioned lack of overt preference from
customers, makes the case for recommending Energy Use payment type over Energy
Reward, although there may be other factors of context in which the exchange is taking place
that could void this finding.

3.3 Online Shapley value payments: Integration of Algorithm 2
with NAC deployment

The analytic Shapley value heuristic (Algorithm 2, described in Section 2.3) went through
several iterations of refinement before being deployed by ANU in the NAC software stack. The
reward calculation procedure was triggered to run immediately after any peak event. This
involved the following steps:

1. The required data was collected from the actual NAC run, including customer PV
generation, load profiles, and initial battery state-of-charge data, background loads at
MV feeder buses, diesel dispatch information, bus voltages and line currents;

2. The network effects of removing the diesel generator and not operating the NAC were
generated in simulation, in which all customers’ batteries are operated in a purely
self-interested manner and a counterfactual unconstrained undersea line current can
be estimated;

3. The required inputs for the Shapley value calculation were generated using the actual
and counterfactual data collected from steps 1 and 2 above, and Algorithm 2 is
executed to calculate the normalised Shapley value;

4. The normalised Shapley value were used to disburse the TasNetworks budgeted
amount, which was given by $1/kWh for all battery energy dispatched during the peak
under the actual NAC operation.

5. The payments amounts were communicated to Reposit Power.

Due to the difficulties encountered in deploying Algorithm 1 (sample-based Shapley value
approximation), deployment of Algorithm 2 alongside the NAC trial in live trials was not
possible until February 2019. Nonetheless, the next two sub-sections focus on the payments
made by Algorithm 2 over two peak events:

(i) during the Queen’s Birthday Holiday 2018 period and
(i) during a live trial in February 2019.

The first event is analysed in detail to show the effects on rewards of using the Shapley value,
while the second demonstrates the use of the Shapley value in a live run of the NAC.
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3.3.1 Example 1: Sunday 10 June 2018 morning peak

For this peak event, there were 31 batteries installed. Numbers of customers connected to
each phase are given below:

5 19 7

This event was a true peak, and payments were made using the heuristic reward rule and
Energy Use payment type described above (i.e. not the SV-based rewards); that is, the actual
payments made by Reposit to the customers were calculate by the heuristic payment rule.

For comparison, the SV-based rewards presented here were calculated using Algorithm 2,
where the sum of actual heuristic payments was used as the budget disbursed by the SV
reward structure. The NAC outputs used in the SV calculations were either the actual NAC
traces from the trial period, or a counterfactual run using a simulation of diesel dispatch with a
human-in-the-loop.

The set of plots below illustrate the SV of the NAC network support activities on the morning of
Sunday 10 June 2018. First, Figure 2 presents the line currents for each phase, which were
the main driver of the SV-based payments.

Line currents, morning of Sunday 10 June 2018

A
—:ll.l

[

Figure 2. Line currents by phase on the undersea cable, morning of Sunday 10 June 2018, illustrating the thermal
constraint exceedance on the blue phase, and phase unbalance.
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Next, the Shapley value payments for the Sunday 10 June 2018 morning peak are plotted in
Figure 3, coloured by phase-to-phase connection (blue is blue-red, red is red-white, and
yellow is white-blue), and including the lower bound:
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Figure 3. Shapley value payments by phase for the morning of Sunday 10 June 2018.

These plots show is that using the SV discriminates between the phases, by allocating greater
payments to the batteries reducing the load on the line responsible for setting the dispatch
level of the diesel generator (which is the blue phase). It is worth noting that such large
differences in the Shapley value payments between phases is probably not likely to be a
common occurrence in other networks. Here we have a combination of per-phase line current
limits, large network imbalance, and low number of batteries relative to the unbalance. Modify
any of these and the difference between phases would be quite small (see the second detailed
example that follows). However, we conjecture that the biggest driver of Shapley value
differences between customers grouped by phase connections will be whether there is a
surplus or deficiency of available support between phases.

As shown in Figure 4, these SV payments are consistent with the heuristic, but do show some
relative under-payment to the red-white phase connected customers.
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Figure 4. Heuristic (actual) payment vs Shapley value-based payment for the morning of Sunday 10 June 2018.

In part, this is an illustration of the shortcomings of the approximation when faced with large
unbalance between the line currents. Specifically, it is only for a small number of
counterfactual coalitions that either of the white or red phase line currents set the generator
dispatch level. This small number of cases are missed when the customers’ support is lumped
by phase connection in the SV approximation. (The full extent of this effect is a key point of
examination when the offline sample-based SV calculation is completed.)

The phase connections go a long way towards explaining the difference in SV payments
between customers. However, other factors have considerable impact on the payments, and
also can explain the divergence of the SV rewards and the heuristic payment ($1/kWh of
energy dispatched from the battery during the peak period). The next two plots illustrate the
effects of two of these factors, namely, voltage ratio and a customer’s non-NAC counterfactual
battery use.

22 /32



Effect of voltage ratio: Figure 5 shows the relationship between SV reward and voltage ratio
- the ratio of average diesel generator voltage to load connection point voltage during the peak
event. Customer phase connection is indicated by colour; note that RW connections can be
ignored because the SV is 0. For the remaining customers, this plot shows a slight upward
trend. This is explained by noting that a lower voltage connection has a greater reduction of
joule losses on the network than a higher voltage connection, and consequently less diesel
use, for the same amount of energy discharged from the two batteries.
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Figure 5. Voltage ratio vs Shapley value payment (Sunday morning, 10 June 2018).

Statistical analysis of this relationship is equivocal, mainly due to the small number of data
points available. However, several customers on BR and WB connections deviate
considerably from this trend. The next plot examines a second factor that explains part of this.
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Effect of customers’ non-NAC counterfactual battery use: Figure 4 illustrates the
relationship between a customer’s battery use in the non-NAC counterfactual and the Shapley
value payment. Specifically, the customers’ non-NAC counterfactual battery use is given by
the depth of discharge during a simulation of the morning peak event without the NAC
operating. The aim here is to measure how much the customer would have used their battery
for their own purposes if the the NAC was not running. Again, customer phase connection is
indicated by colour, and again RW connections can be ignored.
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Figure 4. Battery use in the non-NAC counterfactual vs Shapley value payment (Sunday morning, 10 June 2018).

Figure 4 shows a strong negative relationship between non-NAC battery use and SV. In
addition, the more extreme values on this plot, at ~$2.50 and ~$4.75, and the cluster around
$8.00, correspond to the off-trend data points in Figure 3. This confirms that the SV reward
structure rewards customers for only the additional benefit to the network that they bring for
contributing to the NAC’s operation, and not for discharging the battery within the peak period
to service their own loads.

Although statistical analysis revealed a significant linear relationship, its interpretation is
questionable due to the fact that this is a single peak event and additional significant variation
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in input data is expected between different peaks, the high likelihood of interacting terms in the
model (e.g. phase connection and Shapley value), and the general problem of a low number
of data points available from a single peak event. In addition, these data are generated using a
heuristic that itself has considerable limitations. As such, the numerical statistical results are
not presented here, because they could be both misleading and easily misinterpreted.

3.3.2 Example 2: Saturday 9 February 2019 morning (live trial)

Beginning early February, a number of synthetic peaks were induced on the network in order
to test the computational routines that integrate Algorithm 2 (Shapley value approximation)
with the NAC operation. This trial demonstrated an automated process of computing the
Shapley value payments, and preparing them to be sent to Reposit Power.

Implementation: From a technology deployment point of view, these trials were a success,
with all computational and data-handling procedures running as expected. specifically, these
processes shadowed the continued use of the heuristic payment described at the start of
Section 3.1, so were not used to compute actual payments to customers. Nonetheless, we
now examine them as a test case for the Shapley value-based reward structures.

SV validation: The plot in Figure 5 below shows the counterfactual line currents (i.e. without
NAC operation) assuming a reduced 40A line thermal limit. From this, it can be seen that the
blue phase is carrying relatively more current and requires greater current injection to be
reduced below the 40A limit. However, notice that all three phases require load reduction to
suppress the diesel generator, and that the degree of unbalance between the phases is less
than in the Queen’s Birthday case.
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Figure 5. Counterfactual line currents for morning of Saturday 9 February 2019.

Next, in Figure 6 we compare the payments to each customer, arranged by phase (red are
red-white connections, grey are white-blue, blue are blue-red). These Shapley value results
(crosses, sv_support.json) were produced online, and here they are compared to the heuristic
payment (circles, support.json) to the same customer (which was the payment actually made).

At an aggregate level, the payments to each phase under the heuristic and the Shapley value
are in line with each other, in that the average values by phase are very similar. This is in
keeping with the findings for the Sunday 10 June 2018 morning peak, in the section above.
However, in this case, the payments for all customers are greater than zero. This is a
reflection of the relatively small phase unbalance seen in this case study, compared to the
earlier case.
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Figure 6. Heuristic and SV payments (Saturday 9 February 2019).

Deeper analysis of the effects of voltage ratio and a customer’s non-NAC counterfactual
battery use on the Shapley value rewards plotted here find evidence for the same
relationships identified earlier, and again, they explain the bulk of the difference between
heuristic payments and the SV payments.

3.3.3 Summary of case studies

The SV payments computed using Algorithm 2 reflect the desired properties of accounting for:
1) battery energy capacity and power limits, 2) line losses reductions, via the use of voltage
ratios, and 3) customer’s battery use in the non-NAC counterfactual. The results above show
how well-designed reward structures can capture these effects, and show how support service
pricing can be directly linked to the value that DER provide to regulated monopolies.

However, we should note that the required approximations in Algorithm 2 undermine the use
of these reward structure for calculating customer payments in more complicated problems of
sharing multiple DER value streams. In particular, the NAC was tested for simultaneously
managing network voltages as well as thermal limits. In this instance, the approximations in
Algorithm 2 were found to be poorly aligned with payment expectations, due to the difficulty of
including both network management considerations (i.e. with non-linear network effects).
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4 Customer financial analysis of network support

payments

The aggregated rebates paid to customers for participation in the Bruny Island trial over the

trial period March 2018- February 2019 are given in Table 2, below. Note that only 28

customers have participated over the full period, so this table includes some more recent
additions to the Bruny Island fleet (those connected for <6 months are highlighted in cyan):

Total network Total network
Customer ID | support payments Customer ID | support payments

BT101
BT102
BT104
BT105
BT106
BT108
BT109
BT110
BT111
BT112
BT113
BT115
BT116
BT117
BT118
BT119

129.56
132.19
148.9
100.77
4.13
80.16
84.19
97.2
134.31
102.3
124.12
127.38
134.84
145.32
130.93
140.52

BT120
BT121
BT122
BT123
BT124
BT125
BT126
BT128
BT129
BT131
BT132
BT135
BT136
BT137
BT140
BT141

128.28
150.21
85.56
124.71
99.1
74.77
139.27
94.97
106.58
122.42
85.98
120.65
118.23
40.58
119.48
7.74

Table 2. Network support payments March 2018- February 2019

Note that these values reflect the heuristic payments under both the Energy Reserve and
Energy Use payment types, at a flat price of $1/kWh dispatched during the peak periods. As
such, network effects are not explicitly incorporated into the calculations. These payments, if

repeated into the future, would provide cash-flows with net present values (NPVs) to

customers given in the first column of Table 2 on the following page. The NPV values are the
additional present value of cash-flows associated with running the NAC on Bruny Island under
its current configuration (ie. with diesel generation), and are to be added on to the private
benefits the customers earn for improving their rates of PV self-consumption.
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BT101
BT102
BT104
BT105
BT106
BT108
BT109
BT110
BT111

BT112
BT113
BT115
BT116
BT117
BT118
BT119
BT120
BT121
BT122
BT123
BT124
BT125
BT126
BT128
BT129
BT131
BT132
BT135
BT136
BT137
BT140
BT141

Payment rate ($/kWh dispatched)

$1,205
$884
$1,385
$938
$1,218
$746
$378
$904
$1,250
$1,160
$1,155
$1,185
$1,255
$1,352
$952
$800
$1,194
$783
$1,138
$992
$922
$696
$1,296
$1,307
$1,398
$1,139
$796
$1,230
$1,100
$853
$1,123
$1,112

$603
$442
$693
$469
$609
$373
$189
$452
$625
$580
$577
$593
$627
$676
$476
$400
$597
$392
$569
$496
$461
$348
$648
$654
$699
$570
$398
$615
$550
$426
$561
$556

$422
$309
$485
$328
$426
$261
$132
$317
$437
$406
$404
$415
$439
$473
$333
$280
$418
$274
$398
$347
$323
$243
$454
$458
$489
$399
$279
$430
$385
$298
$393
$389

$241
$177
$277
$188
$244
$149

$76
$181
$250
$232
$231
$237
$251
$270
$190
$160
$239
$157
$228
$198
$184
$139
$259
$261
$280
$228
$159
$246
$220
$171
$225
$222

Table 2. NPV for 15 year battery trial duration, discount factor 8.5%. Top row indicates payment reduction

factors, left column of values is NPVs of actual payments made over 15 years.
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The chance of external factors driving change in the associated network is quite high, reflected
in the choice of discount rate at 8.5%, which is well above current WACC or finance rates.

The mean and median NPVs across all customers is approximately $1000, which may be a
salient figure and provide a significant additional value stream to other customers considering
investing in a residential battery. Note, however, the following caveats to the values reported
here:

e The payments were made at $1.00/kWh discharged, subject to a very conservative
lower bound on the payment level. This likely inflates the rebate paid to the customer
over the economic value of the network support action, as measured by diesel fuel cost
reductions. If fuel costs, as a measure of short run marginal costs, had been used to
rebate customers, then this would be reflected in a price closer to $0.50/kWh. (Note:
See the CONSORT social science report [2] for analysis of participants perspectives
on the Network support payments. These were sometimes felt to be a “bonus” when
compared to bill savings, so it is likely that network payments have a bit of room to
move, when compared to retail tariffs, in the minds of households.)

e The payments were not intended to be generally applicable aggregate payments, but
to reflect the situation on Bruny Island, where battery dispatch offsets diesel generator
use. Different network settings may have lower economic values associated with the
battery discharge activities, such as the value of capital deferral (cost-of-capital
savings) or smaller capital works.

For this reason, several other NPV values are reported above, for network support payments
made at $0.50, $0.35 and $0.20 per kWh dispatched. These figures are intended for
discussion only, and may be reflective of other network investment or augmentation
opportunities (not specified). Of course, it may be the that even greater value per kWh is
possible for next-best network investment and operation options with greater costs.

A more detailed assessment of customer financial outcomes is presented in the Participants’
Solar and Battery System Financial Performance final report [3].
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5 Conclusions

The CONSORT project addressed the Shapley value-based reward structures from an early
stage of basic research to a deployed method of paying participants for use of their DER. Our
results demonstrate how these methods implement value-reflective network support pricing for
behind-the-meter distributed energy resources. The pricing methods developed can overlay
any DER control scheme, from fully-fledged model-based optimisation methods like the NAC,
down to much less sophisticated methods such as static control policies based on local
voltage measurements, as all that is required is a simulation engine for the control scheme.
We will continue to develop the required models and methods, and to prosecute the
arguments, for value-based reward structures for support provided by customer-owned DER.

On the other hand, the difficulties encountered in bringing these method to live trials indicate
the limits of its use for generating “spot” prices. However, it can be argued that network
support is not well suited to spot market arrangements, and that longer-term posted prices, or
even contracts for capacity, are more appropriate. Given this, the reward structures developed
in the project can be used for generating such posted prices or contracts.

5.1 Recommendation: Methods for pricing network support
agreements

In particular, the statistical analysis provided alongside the case study results present a path to
using value-reflective reward structures for generating network and power system support
services. Specifically, as an alternative to online “spot price” calculation, offline Shapley value
computation, analysis and regression-based implementation maybe a viable way to implement
the Shapley value-based methods for pricing network support.

The process could work as follows. Give a given a set of past network peak events, the
Shapley value for each of them can be calculated offline (i.e. in simulation). The results would
then be matched with appropriate input data, such as average in-peak load, battery use, or
average voltage ratios. Regression of these inputs against the Shapley values would reveal
the major contributing factors to the network support value, in simple to understand terms.

Such a regression-based model could, ultimately, take the characteristics of a home as inputs,
and return the resulting prices specified in simple, but tailored, $/kWh units. The development
of this type of tool would help both DNSPs and customers understand the mechanics of
implementing value-reflective pricing of network support services.
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